

www.elsevier.nl/locate/jorganchem

Journal of Organometallic Chemistry 605 (2000) 221-225



# A convenient route to vinylsiloxane-tertiary phosphine-nickel(0) complexes; the molecular structure of $[(Ni{P(C_6H_4Me-4)_3})_2{\mu-(L''L'')_2}]$ $\{(L''L'')_2 = [CH_2=CH(Me)Si(\mu-O)]_4\}$

Peter B. Hitchcock, Michael F. Lappert \*, Hieronim Maciejewski<sup>1</sup>

The Chemical Laboratory, University of Sussex, Brighton BN1 9QJ, UK Received 18 April 2000; accepted 18 May 2000

#### Abstract

A simple one pot synthesis in Et<sub>2</sub>O at ambient temperature, from the readily available starting materials [Ni(cod)<sub>2</sub>], PR<sub>3</sub> and LL or  $(L''L'')_2$ , provides an essentially quantitative route to the known vinylsiloxanenickel(0) complexes [Ni(LL)PR<sub>3</sub>] and the new binuclear analogues [{Ni(PR<sub>3</sub>)}<sub>2</sub>{ $\mu$ -(L''L'')<sub>2</sub>}] (5) {LL = [CH<sub>2</sub>=CH(Me)<sub>2</sub>Si]<sub>2</sub>O, (L''L'')<sub>2</sub> = [CH<sub>2</sub>=CH(Me)Si( $\mu$ -O)]<sub>4</sub> and R = Ph, C<sub>6</sub>H<sub>4</sub>Me-4 or C<sub>6</sub>H<sub>11</sub>-c}. The X-ray crystal structure of **5b** (R = C<sub>6</sub>H<sub>4</sub>Me-4) shows it to be a centrosymmetric binuclear complex containing (L''L'')<sub>2</sub> as a chair-shaped bridging ligand. It is bound to each Ni(PR<sub>3</sub>) moiety by a pair of  $\mu^2$ -vinyl groups (having M and M' as centroids) and each NiMSiOSi'M' metallacycle is also of chair conformation. © 2000 Elsevier Science S.A. All rights reserved.

Keywords: Nickel; Vinylsiloxane complexes

### 1. Introduction

Hydrosilylation is widely used in the silicone industry for the synthesis of monomers containing Si–C bonds, the cross-linking of polymers and as a source of various silane coupling reagents, while in organic chemistry it has a role for the synthesis of alcohols by reduction of carbonyl compounds [1]. Such processes generally require the use of a highly active platinum-containing catalyst. The silicone-soluble Karstedt catalyst is commercially important for hydrosilylation. It is obtained, in presence of the silane, by reaction of chloroplatinic acid H<sub>2</sub>[PtCl<sub>6</sub>]xH<sub>2</sub>O (1) (Speier's catalyst) with a vinylsilicon-containing compound, such as sym-divinyltetra(methyl)disiloxane [CH<sub>2</sub>=CH(Me)<sub>2</sub>Si]<sub>2</sub>O ( $\equiv$ LL) [2,3].

Our earlier studies had established that 1 and LL in the absence of a silane yielded a solution A [4], from which the crystalline platinum(0) complex  $[{Pt(LL)}_2(\mu-$ 

E-mail address: m.f.lappert@sussex.ac.uk (M.F. Lappert).

LL)] (2) was isolated [5]. Complex 2 was shown to be a Karstedt catalyst; with styrene as substrate, transient 14-electron intermediates [Pt(LL)(LL)] and  $[Pt(LL)(\eta^2-CH_2=CHPh)]$  were identified by NMR spectroscopy [6]. Complex 2 was also shown to be a convenient source of further well characterised siloxaneplatinum(0) complexes, such as  $[Pt(LL)(PR_3)]$  [4,7],  $[{Pt(LL)}_2(\mu-dppe)]$  [8] and  $[{Pt(LL)}_3(\mu_3-triphos)]$  [8] [dppe =  $(Ph_2PCH_2)_2$ , triphos =  $(Ph_2PCH_2)_3CMe$  or  $(Ph_2PCH_2CH_2)_2PPh]$ . A series of palladium(0) complexes  $[{Pd(LL)}_2(\mu-LL)]$  (from  $[PdCl_2(cod)_2]$ , Li<sub>2</sub>cot and LL) and [Pd(LL)D] (D =  $C_2H_4$  or PR<sub>3</sub>; R = Me, 'Pr, 'Bu, Ph or  $C_6H_4Me-2$ ) has also been reported [9].

The high cost of platinum has led to much research on various nickel complexes as potential hydrosilylation catalysts [1]. Also relevant to the present study is the fact that tertiary phosphine ligands have a pervasive place in many industrially important noble metalcatalysed organic reactions, including hydrosilylation; complexes of Rh(I), Pd(0 or II) and Pt(0) are particularly prominent [10]. The other pertinent ligand component for this report relates to a vinylsilane. Previous

<sup>\*</sup> Corresponding author. Fax: +44-1273-677196.

<sup>&</sup>lt;sup>1</sup> Present address. Adam Mickiewicz University, 60–780 Poznan, Poland.

work dealing with these parameters concerned the formation of (a)  $[Ni(LL)(PR_3)]$  (R = Ph, C<sub>6</sub>H<sub>4</sub>Me-4 or  $C_6H_{11}$ -c) (3) from trans, trans, trans-cyclododecatrienenickel(0) {=[Ni(CDDT]} and LL [7,11], and (b) [Ni(LPhL<sup>Ph</sup>)(PPh<sub>3</sub>)]  $[Ni(LL)(PPh_3)]$ or from zinc  $L^{\rm Ph}L^{\rm Ph}$  $[NiCl_2(PPh_3)_2],$ dust and LL or  $\{\equiv [CH_2 = CH(Ph)_2Si]_2O\}$ [7]. The compound [Ni{CH<sub>2</sub>=CH(Me)<sub>2</sub>SiOSi(Me)<sub>2</sub>CH=CHSi(Me)<sub>2</sub>OSi(Me)<sub>2</sub>-CH=CH<sub>2</sub>}] was obtained from nickel atoms and LL under metal vapour synthesis conditions [12]. Other vinylsilanes which have been employed as ligands in Group 10 metal chemistry include (CH<sub>2</sub>=CH)<sub>2</sub>SiMe<sub>2</sub>  $(\equiv L'L')$  and  $[CH_2=CH(Me)Si(\mu-O)]_4$   $[\equiv (L''L'')_2]$  (4). Thus, [NiCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>], zinc dust and L'L' afforded  $[{Ni(\mu-L'L')(PPh_3)}_2]$  [8]; and 4 has been used in platinum chemistry [7,13] to generate hydrosilylation catalysts related to 2 [13].

### 2. Results and discussion

### 2.1. Synthetic studies

Our objective was to develop convenient syntheses for nickel(0) complexes having  $\eta^2$ -vinylsilicon and ter-



Fig. 1. The molecular structure of  $[(Ni{P(C_6H_4Me-4)_3})_2[CH_2=CH(Me)S(\mu-O)]_4$  (5b) with atom labelling.



Fig. 2. Schematic representation of  ${}^{1}\text{H}{-}{}^{31}\text{P}$  and  ${}^{31}\text{P}{-}{}^{29}\text{Si}$  coupling constants (Hz), from  ${}^{1}\text{H}{-}$  and  ${}^{29}\text{Si}{-}\text{NMR}$  spectra, for **5a**, **5b**, **5c**, respectively in C<sub>6</sub>D<sub>6</sub> at 298 K.

tiary phosphine ligands, study their structures and explore their potential as hydrosilylation catalysts; catalytic aspects will be considered in a later paper.

An improved synthesis (cf. [7] and [11]) of the complexes **3** was accomplished, using the readily available  $[Ni(cod)_2]$  as precursor (Eq. 1). The displaced volatile cyclooctadiene was easily removed in vacuo, providing the essentially pure residue of the appropriate complex **3** in quantitative yield. Each of the crystalline complexes **3a**, **3b** and **3c** was authenticated by showing it to have identical NMR spectra to those of the previously characterised specimens [7].

$$[Ni(cod)_{2}] + [CH_{2}=CH(Me)_{2}Si]_{2}O + PR_{3} \longrightarrow$$

$$(\equiv LL)$$

$$[Ni(\{\eta-CH_{2}=CH(Me)_{2}Si\}_{2}O)(PR_{3})] + 2 cod$$

**3a** 
$$R = Ph$$
  
**3b**  $R = C_6H_4Me-4$   
**3c**  $R = C_6H_{11}-c$  (1)

In a similar fashion, but using cyclotetrakis[vinyl(-methyl)siloxane] (4) [ $\equiv$ L''L'')<sub>2</sub>] in place of LL, there were obtained the binuclear nickel(0) complexes **5**, Eq. (2). Each of the crystalline, yellow complexes **5a**, **5b** and **5c** gave satisfactory analyses and appropriate NMR spectra. The various <sup>1</sup>H-<sup>1</sup>H, and <sup>1</sup>H-<sup>31</sup>P and <sup>31</sup>P-<sup>29</sup>Si coupling constants, Fig. 2, were similar for each of **5a**-**5c**, and also to those found for **3a**-**3c** [7]. Like their analogues **3** [7], it is interesting that **5c** is the rac-diastereoisomer in the solid state.



(2)

Table 1 Selected bond lengths (Å) and angles (°) for **5b**<sup>a</sup>

| Bond lengths      |            |                  |            |
|-------------------|------------|------------------|------------|
| Ni–P              | 2.180(1)   | Ni-C(1)          | 2.008(3)   |
| Ni-C(2)           | 2.005(3)   | Ni-C(3)          | 2.023(3)   |
| Ni-C(4)           | 2.000(3)   | Ni-M(1)          | 1.882(3)   |
| Ni-M(2)           | 1.887(3)   | C(1) - C(2)      | 1.393(4)   |
| C(3)–C(4)         | 1.392(4)   |                  |            |
| Bond angles       |            |                  |            |
| M(1)-Ni-M(2)      | 131.85(11) | M(1)–Ni–P        | 111.18(9)  |
| M(2)–Ni–P         | 116.00(9)  | Si(1)-O(1)-Si(2) | 129.08(11) |
| Si(1)-O(2)-Si(2)' | 148.67(12) | C(2)-C(1)-Si(1)  | 122.4(2)   |
| C(2)-C(1)-Ni      | 69.6(2)    | Si(1)-C(1)-Ni    | 113.05(13) |
| C(1)-C(2)-Ni      | 69.8(2)    | C(4)-C(3)-Si(2)  | 123.4(2)   |
| C(4)-C(3)-Ni      | 68.9(2)    | Si(2)-C(3)-Ni    | 113.03(13) |
| C(3)-C(4)-Ni      | 70.7(2)    | C(12)-C(7)-C(8)  | 117.5(2)   |

<sup>a</sup> M(1) and M(2) are the centres of the C(1)–C(2) and C(3)–C(4) bonds, respectively. Symmetry transformations used to generate equivalent atoms:, -x, -y, -z.

A platinum analogue of **5c**, prepared from  $[Pt(LL){P(C_6H_{11}-c)_3}]$  and **4**, had been reported [4]; its structure was conjectured to be similar to that now established for **5b** (see Section 2.2).

### 2.2. The X-ray molecular structure of $[(Ni\{P(C_{6}H_{4}Me-4)_{3}\})_{2}\{\mu-(L''L'')_{2}\}]$ (5b)

Crystalline **5b**, obtained from benzene, is a centrosymmetric binuclear nickel(0) complex, the inversion centre being the mid-point of the chair-shaped  $(SiO)_4$ ring, Fig. 1. Selected bond lengths and angles are listed in Table 1. There is a molecule of benzene solvate in a general position.

The local geometry at each three-coordinate nickel atom is planar, taking its vertices to be the phosphorus atom and the centroids M of adjacent  $\eta^2$ -vinyl groups. The M(1)-Ni-M(2) angle is wider  $[131.8(1)^{\circ}]$  than M(1)-Ni-P [111.2(1)°] or M(2)-Ni-P [116.0(1)°]. This situation is similar to that in  $[Ni(LL){P(C_6H_{11}-c)_3}]$ , the corresponding angles being 130.1(1), 113.9(1) and 115.1(1)° [7]. Likewise, the Ni–P and average Ni– $C_{\alpha}$ and Ni– $C_{\beta}$  bond lengths in that compound of 2.206(1), 2.000(3) and 2.027(3) Å are close to the 2.179(1), 2.003(3) and 2.015(3) Å in 5b. Each six-membered metallacyclic ring [NiM(1)Si(1)OSi(2)M(2)] (5b) adopts a chair conformation, as had previously been observed for (Met)M(1)Si(1)OSi(2)M(2) rings in Ni(LL) [7], Pt(LL) [4,5,7,8], Rh(LL) [14] and Rh(LPhL<sup>Ph</sup>) [14] complexes (Met = Ni, Pt or Rh).

### 3. Experimental

### 3.1. General procedures and starting silicon reagents

All manipulations and instruments were as described earlier [7,8,14]. The silicon reagents used in Sections 3.2, 3.3, 3.4 and 3.5 were kindly provided by Dow Corning, Ltd.

## 3.2. Synthesis of $[{Ni(PPh_3)}_2{\mu-(\eta-CH_2=CH(Me)Si(\mu-O))_4}]$ (5a)

Cyclotetrakis[vinyl(methyl)siloxane] (1.0 ml) was added slowly to a stirred red suspension of [Ni(cod)<sub>2</sub>] (0.50 g, 1.8 mmol) and PPh<sub>3</sub> (0.47 g, 1.8 mmol) in diethyl ether (10 ml) at ambient temperature, yielding a vellow solution. The reaction mixture was allowed to stir overnight. The volatiles were removed in vacuo to give a yellow oil, which was extracted into pentane  $(2 \times 2 \text{ ml})$ . The extract was filtered through Celite. The filtrate was concentrated, then set aside at  $-30^{\circ}$ C to yield the yellow solid compound 5a (0.77 g, 0.8 mmol, 86%). Yellow crystals of 5a, m.p. 212–214°C (dec) were obtained by recrystalisation from benzene, at ambient temperature. Anal. Found: C, 58.3; H, 5.49. C<sub>48</sub>H<sub>54</sub>Ni<sub>2</sub>O<sub>4</sub>P<sub>2</sub>Si<sub>4</sub> Calc.: C, 58.4; H, 5.52%. <sup>1</sup>H-NMR (C<sub>6</sub>D<sub>6</sub>, 298 K, 500 MHz): δ 0.39 (s, 12H), 2.56 (td, 4H), 3.07 (dd, 8H), 7.03–7.64 (m, 30H),  ${}^{3}J({}^{1}H_{1}-{}^{1}H_{2}) = 12.6$ Hz,  ${}^{3}J({}^{1}H_{1}-{}^{1}H_{3}) = 16.5$  Hz,  ${}^{3}J({}^{1}H_{1}-{}^{31}P) = 4.8$  Hz,  ${}^{3}J({}^{1}\text{H}_{2}-{}^{31}\text{P}) = 7.9 \text{ Hz}, {}^{3}J({}^{1}\text{H}_{3}-{}^{31}\text{P}) = 6.4 \text{ Hz}. {}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (C<sub>6</sub>D<sub>6</sub>, 298 K, 125.8 MHz): δ 0.61 (s, Me), 58.17 (s, =CH-), 63.15 (s, =CH<sub>2</sub>), 127.81-136.60 (m, Ph). <sup>29</sup>Si{<sup>1</sup>H}-NMR (C<sub>6</sub>D<sub>6</sub>, 298 K, 99.4 MHz): $\delta$  – 24.0 (d),  ${}^{3}J({}^{29}\text{Si}{}^{-31}\text{P}) = 4.0 \text{ Hz. } {}^{31}\text{P}\{{}^{1}\text{H}\}\text{-NMR} (C_{6}\text{D}_{6}, 298 \text{ K},$ 101.2 MHz): δ 41.2 (s).

### 3.3. Synthesis of $[{NiP(C_6H_4Me-4)_3}_2 - {\mu-(\eta-CH_2=CH(Me)Si(\mu-O))_4}]$ (5b)

Compound 5b (0.83 g, 0.8 mmol, 85%) was prepared in a similar manner as 5a, except that  $P(C_6H_4Me-4)_3$ was used in place of PPh<sub>3</sub>. Yellow crystals of 5b, m.p 224–226°C (dec) suitable for X-ray diffraction, were grown from benzene at ambient temperature over a period of 24 h. Anal. Found: C, 60.7; H, 6.54. C<sub>54</sub>H<sub>66</sub>Ni<sub>2</sub>O<sub>4</sub>P<sub>2</sub>Si<sub>4</sub> Calc.: C, 60.6; H, 6.21%. <sup>1</sup>H-NMR (C<sub>6</sub>D<sub>6</sub>, 298 K, 500 MHz): δ 0.48 (s, 12H), 2.03 (s, 9H), 2.61 (td, 4H), 3.16 (dd, 8H), 6.93-7.65 (m, 24H),  ${}^{3}J({}^{1}H_{1}-{}^{1}H_{2}) = 12.1$  ${}^{3}J({}^{1}H_{1}-{}^{1}H_{3}) = 16.4$ Hz, Hz,  ${}^{3}J({}^{1}\mathrm{H}_{1}-{}^{31}\mathrm{P}) = 4.6$  ${}^{3}J({}^{1}\text{H}_{2}-{}^{31}\text{P}) = 6.0$ Hz, Hz,  ${}^{3}J({}^{1}H_{3}-{}^{31}P) = 10.5$  Hz.  ${}^{13}C\{{}^{1}H\}$ -NMR (C<sub>6</sub>D<sub>6</sub>, 298 K, 125.8 MHz):  $\delta$  0.69 (s, Me), 21.01 (s, Me), 57.68 (s, =CH-), 63.00 (s, =CH $_2$ ), 127.80-139.22 (m, tol). <sup>29</sup>Si{<sup>1</sup>H}-NMR (C<sub>6</sub>D<sub>6</sub>, 298 K, 99.4 MHz):  $\delta$  – 23.9 (d),  ${}^{3}J({}^{29}\text{Si}-{}^{31}\text{P}) = 3.8 \text{ Hz. } {}^{31}\text{P}\{{}^{1}\text{H}\}\text{-NMR} (C_{6}\text{D}_{6}, 298 \text{ K},$ 101.2 MHz): δ 39.1 (s)

# 3.4. Synthesis of $[{Ni(P(C_6H_{11}-c)_3)}_2 - {\mu-(\eta-CH_2=CH(Me)Si(\mu-O))_4}]$ (5c)

Compound 5c (0.70 g, 0.7 mmol, 76%) was prepared in similar manner as 5a, except that  $P(C_6H_{11}-c)_3$  was used in place of PPh<sub>3</sub>. Yellow crystals of 5c, m.p. 235-237°C (dec) were obtained by recrystalisation from benzene, at ambient temperature. Anal. Found: C, 57.3; H, 9.01. C<sub>48</sub>H<sub>90</sub>Ni<sub>2</sub>O<sub>4</sub>P<sub>2</sub>Si<sub>4</sub> Calc.: C, 56.4; H, 8.87%. <sup>1</sup>H-NMR (C<sub>6</sub>D<sub>6</sub>, 298 K, 500 MHz): δ 0.51 (s, 12H), 1.1-1.8 (m, 33H), 2.53 (td, 4H), 3.06 (dd, 8H),  ${}^{3}J({}^{1}\mathrm{H}_{1}-{}^{1}\mathrm{H}_{3}) = 16.3$  ${}^{3}J({}^{1}H_{1}-{}^{1}H_{2}) = 12.6$ Hz. Hz.  ${}^{3}J({}^{1}H_{1}-{}^{31}P) = 3.4$  ${}^{3}J({}^{1}\text{H}_{2}-{}^{31}\text{P}) = 5.6$ Hz, Hz,  ${}^{3}J({}^{1}H_{3}-{}^{31}P) = 8.2$  Hz.  ${}^{13}C\{{}^{1}H\}$ -NMR (C<sub>6</sub>D<sub>6</sub>, 298 K, 125.8 MHz):  $\delta$  0.65 (s, Me), 26.99–36.54 (m, C<sub>6</sub>H<sub>11</sub>-c), 55.60 (s, =CH-), 58.95 (s, =CH<sub>2</sub>).  $^{29}Si\{^{1}H\}$ -NMR  $(C_6D_6, 298 \text{ K}, 99.4 \text{ MHz}): \delta - 23.6 \text{ (d)}, {}^{3}J({}^{29}\text{Si}-{}^{31}\text{P}) =$ 3.2 Hz.  ${}^{31}P{}^{1}H$ -NMR (C<sub>6</sub>D<sub>6</sub>, 298 K, 101.2 MHz):  $\delta$ 39.4 (s).

## 3.5. Typical synthesis of $[Ni\{\mu-CH_2=CH(Me)_2Si\}_2O(PR_3)]$ (3)

Divinyltetramethyldisiloxane (1.0 ml) was added slowly to a stirred red suspension of [Ni(cod)<sub>2</sub>] (0.56 g, 2.5 mmol) and PR<sub>3</sub> (2.5 mmol; R = Ph, C<sub>6</sub>H<sub>4</sub>Me-4 or  $C_6H_{11}$ -c) in diethyl ether (10 ml) at ambient temperature, yielding a yellow solution. The reaction mixture was allowed to stir overnight and the volatiles were removed under reduced pressure to yield a yellow oil. This was taken up into pentane  $(2 \times 2 \text{ ml})$  and filtered through Celite. Concentration of the filtrate and cooling to  $-30^{\circ}$ C yielded yellow crystals of 3. Each of crystalline complexes the  $[Ni{\mu-CH_2}=$  $CH(Me)_{2}Si_{2}O(PPh_{3})$ ], (**3b**),  $[Ni\{\mu-CH_{2}=CH(Me)_{2}Si\}_{2}$ - $O\{P(C_6H_4Me-4)_3\}$ ] 3a and  $[Ni\{\mu-CH_2=CH(Me)_2Si\}_2-CH(Me)_2Si\}_2$ 

Table 2

| Crystal | data | and | structural | refinement | parameters | for | 5ł | b |
|---------|------|-----|------------|------------|------------|-----|----|---|
|---------|------|-----|------------|------------|------------|-----|----|---|

| Formula                                    | $C_{54}H_{66}Ni_2O_4P_2Si_4\cdot 2(C_6H_6)$ |  |  |  |
|--------------------------------------------|---------------------------------------------|--|--|--|
| Formula weight                             | 1227.0                                      |  |  |  |
| Crystal system                             | Triclinic                                   |  |  |  |
| a (Å)                                      | 10.045(5)                                   |  |  |  |
| b (Å)                                      | 11.529(3)                                   |  |  |  |
| c (Å)                                      | 14.179(9)                                   |  |  |  |
| α (°)                                      | 80.65(4)                                    |  |  |  |
| $\beta$ (°)                                | 76.86(4)                                    |  |  |  |
| γ (°)                                      | 85.47(3)                                    |  |  |  |
| $U(Å^3)$                                   | 1576.3(13)                                  |  |  |  |
| Z                                          | 1                                           |  |  |  |
| $D_{\text{calc}}$ (g cm <sup>-3</sup> )    | 1.29                                        |  |  |  |
| Space group                                | $P\overline{1}$ (No.2)                      |  |  |  |
| $\theta_{\rm max}$ for data collection (°) | 25                                          |  |  |  |
| Unique reflections                         | 5527                                        |  |  |  |
| Reflections with $[I > 2\sigma(I)]$        | 4543                                        |  |  |  |
| $R_1$ [for $I > 2\sigma(I)$ ]              | 0.035                                       |  |  |  |
| $wR_2$ (for all data)                      | 0.083                                       |  |  |  |

 $O\{P(C_6H_{11}-c)_3\}$ ] (3c) was authenticated by showing it to have identical NMR spectra to those of the previously characterised specimens [7].

### 3.6. X-ray structure determination of 5b

Intensities were measured on a Enraf–Nonius CAD 4 difractometer with monochromated Mo–K<sub> $\alpha$ </sub> radiation ( $\lambda = 0.71073$  Å). Structure solution was by SHELXS-86 [15]. Refinement was by full-matrix least-squares on  $F^2$  using all reflections and SHELXL-93 [16]. Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in riding mode with  $U_{\rm iso}$ (H) equal to  $1.2U_{\rm eq}$ (C) or  $1.5U_{\rm eq}$ (C) for methyl groups. The 4-tolyl methyl H atoms were included as disordered equally over two sets of positions related by a 60° rotation. Further details are in Table 2.

#### 4. Supplementary material

Crystallographic data for the structural analysis have been deposited at the Cambridge Crystallographic Data Centre: CCDC no. 142037. Copies of this information may be obtained free of charge from The Director, CCDC, Cambridge CB2 1EZ, UK (fax: +44-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk or www: http:// www.ccdc.cam.ac.uk).

### Acknowledgements

We thank Dow Corning Ltd. (Barry) for gifts of chemicals, the Royal Society for the award of a R.S.-NATO postdoctoral fellowship to H.M. and EPSRC for other support

### References

- B. Marciniec (Ed.), Comprehensive Handbook on Hydrosilylation, Pergamon, Oxford, 1992.
- [2] D.N. Willing, US Patent 34 19 593 (1968).
- [3] B.D. Karstedt, US Patent 37 75 452 (1973).
- [4] G. Chandra, P.Y. Lo, P.B. Hitchcock, M.F. Lappert, Organometallics 6 (1987) 191.
- [5] P.B. Hitchcock, M.F. Lappert, N.J.W. Warhurst, Angew Chem. Int. Ed. Engl. 30 (1991) 438.
- [6] M.F. Lappert, F.P.E. Scott, J. Organomet. Chem. 492 (1995) C11.
- [7] P.B. Hitchcock, M.F. Lappert, C. MacBeath, F.P.E. Scott, N.J.W. Warhurst, J. Organomet. Chem. 528 (1997) 185.
- [8] P.B. Hitchcock, M.F. Lappert, C. MacBeath, F.P.E. Scott, N.J.W. Warhurst, J. Organomet. Chem. 534 (1997) 139.
- [9] J. Krause, G. Cestaric, K.-J. Haack, K. Seevogel, W. Storm, K.R. Pörschke, J. Am. Chem. Soc. 121 (1999) 9807.
- [10] B. Cornils, W.A. Herrmann, Applied Homogeneous Catalysis with Organometallic Compounds, VCH, Weinheim, 1996.
- [11] B. Proft, PhD. Dissertation, University of Düsseldorf, 1993.

- [12] F.G.N. Cloke, P.B. Hitchcock, M.F. Lappert, C. Mac-Beath, G.O. Mepsted, J. Chem. Soc. Chem. Commun. (1995) 87.
- [13] J. Stein, L.N. Lewis, Y. Gao, R.A. Scott, J. Am. Chem. Soc. 121 (1999) 3693.
- [14] C.J. Cardin, P.B. Hitchcock, M.F. Lappert, C. MacBeath,

N.J.W. Warhurst, J. Organomet. Chem. 584 (1999) 366.

- [15] G.M. Sheldrick, in: G.M. Sheldrick, C. Krüger, R. Goddard (Eds.), Crystallographic Computing, vol. 3, Oxford University, Oxford, 1985, p. 175.
- [16] G.M. Sheldrick, SHELXL-93, A Program for Crystal Structure Refinement, University of Göttingen, 1993.